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Abstract. The fermion self-mass is computed to order e4 in gravity-modified quantum 
electrodynamics. I t  is found that regularization does proceed as one would expect from the 
results of second order computations given by Abdus-Salam, Isham and Strathdee. The 
inverse of the gravitational constant which appears as an inbuilt cut-off regularizes the 
infinite terms (e2  In , _ c ) ~  and e4 In ,_c, respectively. to ( e 2  In l/Km)’ and e‘ in 1 I K ~ .  

1. Introduction 

The modification of quantum electrodynamics proposed by Abdus-Salam et a/ (197 1) 
yields, as they have shown, a finite result for the self-mass of order e’. In fact. the con- 
sideration of gravity in conventional quantum electrodynamics has given rise to a 
self-consistent relativistic quantum field theory ; where to our present knowledge 
every physical process involving electromagnetic interaction can be quantitatively 
studied in principle to any given order of approximation. 

In the past theories were formulated based on the principle of the special theory of 
relativity. The formulation of more general and covariant theories based on the principle 
of general relativity was avoided only because of the lack of mathematical techniques 
available at that time. The general covariance demanded the action integral J 9 ( x )  d4x 
to be invariant under general coordinate transformation. It was only possible when the 
lagrangian carried a factor (det Lp“)- ; Lp’ is the Vierbein gravity field. This factor made 
every lagrangian non-polynomial. Because of its complexity and some mathematical 
difficulties we neglected this approach without realizing that this could distort space-time 
and lead to non-physical results. 

Recent development of new mathematical techniques for handling the non-polyno- 
mial lagrangians (Okubo 1954, Efimov 1963, Fradkin 1963, Volkov 1968, Abdus-Salam 
et a/ 1970) has given hope for the construction of a general covariant theory. The typical 
characteristic of the non-polynomial theories is found to be the logarithmic dependence 
of the Green function on its coupling constant. Thus in the non-polynomial theory 
of electromagnetic interactions we get a term proportional to ( ~ ’ p ~ ) ”  ln(K’p’) ; the 
gravitational coupling constant K is related to the newtonian gravitation21 constant G, by 
K’ = 8zGN = 10-22m,’. Neglecting gravity, by setting G N  = 0 we notice that it was 
this logarithmic term which behaved as In m in conventional quantum electro- 
dynamics. To  remove these singularities we adopted a purely mathematical regulariza- 
tion; we cut-off the divergent integrals by introducing a highly massive fielc’ without any 
physical interpretation. 
t This work was submitted to London University in partial fulfilment of the requirements for a PhD degree. 
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In this new model we find that the inverse of the gravitational constant ( K - '  = 1019 
BeV) appears as an inbuilt cut-off. Here gravity plays the role of a regulator at high 
frequencies. Physically it can be interpreted as if the electron has an intrinsic radius equal 
to its Schwartzschild radius r = 2m,2GN, measured in units of m;'. This provides a 
natural cut-off for the wavelength of any virtual photon which the eIectron can emit. 

In the next section we will give a brief outline of the techniques involved ; for details 
we refer to the paper of Abdus-Salam et al l(971). We then proceed to the fourth order 
computation of the fermion self-mass. In general one does not need the mass correction 
of order e4 for any physical purpose, but we thought i t  worthwhile to have a further check 
on the consistency of the theory by going up to higher orders. 

2. Gravity-modified electromagnetic interaction 

The interaction part of the gravity-modified lagrangian is given by 

In the limit of asymptotically flat space-time the field Lw can be expressed in terms of 
the physical graviton field 

L,""(X) = rPa + ) K f # J " ( X )  (2) 

where = diag(1, - 1, - 1, - 1). Here (det L ) - '  is the main source of non-poly- 
nomiality. By setting K = 0, the above lagrangian reduces to the conventional Dirac 
lagrangian. 

Formally grit can be expressed in the form of a power series, 

According to this expression at each point of space-time there will be emission or 
absorption from an electron line of a photon and an infinite number of gravitons; 
as shown in figure 1. The two-point self-energy diagram is shown in figure 2, the 

Figure 1. Electron-photon-graviton vertex in gravity-modified quantum electrodynamics. 
Full curve, electron ; broken curve, gravitons; wavy curve, photon. 

Figure 2. Gravity-modified self-energy part of order e2. 
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corresponding matrix element is given by 

= e 2 ( o l ~ ~ , ~ , ( x ) $ ( x ) $ ( 0 ) ~ , , ( ~ ~ ~ b l ~ ~ ~ ~ a ~ " b ( x ~ .  (4) 

This amplitude differs from that of conventional quantum electrodynamics by the 
presence of function 9 P a j v b ( x ) .  This two-point function 9pa,vb(~) represents the exchange 
of a set of infinitely many gravitons. It is called the superpropagator, the basic ingredient 
of gravity-modified quantum electrodynamics. It is involved in every diagram of 
order (e2)" where n = 1 ,2 , .  . . , CO. It is defined as 

Lpa(x) can be expressed in terms of +p'"(x) by relation (2); for massless gravitons, 

(0lT~"(x)+"(0)~0) = + ( q " q a b + y l " Y p  - q"q"b)D(x) ( 6 )  

where D(x) denotes the zero-mass causal propagator ( - 4n2x2)- '. This shows that 
propagator 9 p a , v b ( x )  will involve the object ( -  1/x2)". This object possesses a singularity 
at x = 0, as n increases the singularity becomes worse and worse. When we go over to 
momentum-space amplitude the difficulty arises in defining the Fourier transform of 
this object. 

To solve this problem Abdus-Salam and Strathdee (1970), Volkov (1968) and others 
make use of the Gelfand and Shilov (1964) technique for taking Fourier transforms of 
a generalized function ( -  l/x2)" for appropriate regions of x and n. Then they analytic- 
ally continue the results for other regions. Lehmann and Pohlmeyer (1971) and Taylor 
(1971) have shown rigorously that the resulting amplitudes possess the correct analytic 
structure associated with the requirement of unitarity. 

In order to be able to use the Gelfand-Shilov formula they first perform a Sommerfeld- 
Watson transformation to convert the sum into an integral. Then the propagator is 
given by the contour integral, 

% v , v b  (x) = 7 J dzT( - z) cos nz{ q~aqvbB'o)(z) 
27C1 R e z - 0  

+ + ( ? y q a b  + q@bq".  - q""yl"b)9'"(z)} (K2D(X))' 

where the scalar amplitudes 9 ' ' ' ( z )  and @')(z)  are given respectively by 

@O'(Z) = 9(z)-&z(l9z+ 53)9(z- ~ ) + & z ( z -  1 ) ( ~ + 2 ) ~ 5 ? ( z - 2 )  
9 '1' ( z )  = - $ z ( z + ~ ) ~ ( z -  l)+i$Z(z- 1 ) ( ~ + 2 ) ~ 9 ( ~ - 2 )  

with 9 ( z )  given by 

(7 )  
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These amplitudes are analytic in the neighbourhood of z = 0 at which point they take 
the following values: 

W ( 0 )  = 1 and 9(1)(0) = 0 

Next, a Fourier transformation is performed. According to the investigation of Gelfand 
and Shilov (1964) the Fourier transform of ( l/x2)' is a well defined classical mathematical 
object whenever 0 < Re z < 2 and is given by 

( -p2)'-27c(47r)2-2z 
d4x eipx(D(x))' = - i  . 

sln(7cz)T(z)r(z- 1) 

for p 2  < 0. The Fourier transform of ( 1/x2)", with n lying outside this region is defined 
by the analytic continuation of this function in the variable z. 

For amplitudes in euclidean space x2 = - ( x i + x 2 ) :  the function 

(D(x))' = ( -  1/4n2x2)' 

is real and positive; and if the contour lies such that the power of D(x) satisfies the 
condition 0 < Re z < 2, then the superpropagator in p space is defined as 

1 
9pa,vb(p2)  = - S dzT( - z)  cos 7 c z { ~ p a ~ v b 9 ( o ~ ( z )  

2Z1 R e z < O  +' p\ ab p b  va- pa vb  
2('1 'I +'I 'I 'I 'I )Q(1)(z)P(P23 4 ( K 2 ) '  

where D ( p 2 ,  z) is given by relation (10). It can be rewritten as 

We always start perturbation theory computations in the Symanzik region of external 
momenta where the scalar products of all momenta are space-like. Since in general 
there are no production thresholds we can easily achieve this by a Wick rotation to 
euclidean space-time. After computations have been performed, we analytically con- 
tinue to the physical subspace of momenta. 

3. Self-mass of order e4 

For the conventional Dirac lagrangian 

%"t = e h p * A ,  

the Feynman diagrams, which contribute to the fourth order in the self-energy part, are 
shown in figure 3 .  These diagrams have been computed by Frank (1951) and Bialyncika- 
Birula (1965). By introducing gravitational interaction at each vertex and joining these 
vertices, pairwise, by superlines ; we get the corresponding gravity-modified self-energy 
diagrams of order e4 shown in figure 4. 

Since our interest is to see how the regularization is going to proceed in higher order 
in e in gravity-modified quantum electrodynamics: we will compute the diagram (4c), 
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( c )  
Figure 3. Conventional self-energy diagrams of order e4. 

k’ 

( c )  

Figure 4. Gravity-modified self-energy diagrams of order e4 

which seems to be most complicated, in detail. To be sure we have also checked the 
regularization for the other diagrams as well ; these have all been individually regularized. 

The matrix element corresponding to diagram (44 is given by 

c4(x) = (ie)4ypS(xl - x2)yvS(x2 - x3)?j.S(x3 - x4)YpD~b(x1 - x3)Dcd(x2 - x4) 

x P Q J b ( x l  - x 3 ) 9 c q x 2  - x4). (12) 

Substituting for D,,(xi - x j )  = g,,D(x, - x j )  and FJpa3vb(xi - x j )  given by relations (7) and 
(8) we obtain 

C4(x) = (ie)4ypS(xl - x2)yvS(x2 - x,).;,S(x, - x4)y,. 

Now we will go over to momentum space where calculations seem to be simple. For 
this purpose we take the Fourier transform of the above amplitude for euclidean space- 
time. Making use of the Gelfand-Shilov formula, 

where 
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We can write the momentum-space amplitude for kZ < 0 and 0 < Re z < 2 

where 

r(i - zij) 

r(i + z i j )  
F ( Z , ~ )  = r ( -z i j )  COS ~ C Z ~ , ( B ~ ~ ~ ( Z ~ ~ )  + 2 9 “ ’ ( ~ ~ ~ ) ) ( r c ~ / 1 6 n ~ ) ’ ~ ~  

and 

y,@ - R  + m)y,@ -A  - R ‘ +  m)y,@ -4‘ + m)yv 
{(p- k)’- m 2 }  {(p- k -  k’)’- m Z }  {(p- k’)’-m’>’ 

X 

Simplifying the numerator we can write 

C,(P) = m 4 p 2 )  +$W), 
where 

(-k2)Z13-1 ( - /(2)’24 - 1 1 

(-@-)‘13-1 ( - kr2)’Z4 1 

Yo(p2, ~ 1 3 , 2 2 4 )  = J d4k d4k‘ 
( p  - k)’ - m2 (p - k’)’ - mz (p - k - k‘)’ - m2 

(p- k)’ - m2 (p - k’)’ - m2 (p- k-  k’)’ - m2 
Yl(p2, 2 1 3 ,  zZ4) = s d4k d4k‘ 
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(- k2)=13 - 1 ( -  k'2)z24 + 1 1 Y8(p2. 2 1 3 ,  z2J  = 1 d4k d4k' 
( p  - k)2 - m2 ( p  - k')2 - m2 ( p  - k - k')2 - m2 

(-k2)213+1 ( -  kr2)Z24 - 1 1 

2 (- k2)'13 ( -  kt2)r24 1 

Y,(p2. z1  3, 224) = j d4k d4k' 

Y1o(p , 213 ,  224) = 1 d4k d4k' 

( p -  k)' - m2 ( p  - k')2 - m2 ( p  - k - k')2 - m2 

( p -  k )2  - m2 ( p -  k')2 - m 2  ( p -  k -  - m 2 '  
(17) 

Since k, k '  and 213, 2 2 4  are integration variables we can interchange k and k'  and 
similarly 213 and 224.  Thus from (16) and (17) we can deduce the following relations: 
Yl(p2) = Y2(p2), Y3(p2) = Y4(p2), Y6(p2) = Y,(pz) and Y,(p2) = Y9(p2). Thus we need to 
evaluate only Yo Y,, Y3, Y,, Y6, Y, and Yl0 . These amplitudes are evaluated in detail 
in the appendix of Parveen (1971), the results being as follows: 
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y 5 ( P 2 $  z133  z 2 4 )  

= - n4r( - z1 3)(m2)213r( 1 + z,,)F( - z13, 1 - z1 ; 2 ;  p 2 / m 2 )  

x r( - z 2 4 ) ( ~ 2 ) 2 2 4 r (  1 + z,,)F( - zZ4, 1 - z Z 4 ;  2 ; p 2 / m Z )  

= - 714p29-( - z13)r (  1 +z13)(m2)213F( - z13, 1 - 213 ; 2 ;  p 2 / m 2 )  

y6(P2, z 1 3 *  z24) 

x r( - zZ4)r(2 + - 22491 - 2 2 4 ;  3 ; p2/m2) 

The contour integration over z13 and zZ4 gives 

" I  I 
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1 6n2 
y3(P2) = 7c4 ( - In KZmZ + 5.5 - 3$( 1) 

where 

3 m2 ( m 2 - p 2 l 2  
2 P  P4 

U2 = 7.5-3$(1)--+7-  
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U ,  = 2 1 + t  i 

In the above expressions all the terms are finite with the exception of terms involving 
the v integral. This integral shows a divergence at q = 0 ;  this is the usual infrared 
divergence and can be eliminated in the usual way (Jauch and Rohrlich 1955) for the real 
processes. 

In general the object of physical interest is the fermion electromagnetic mass; this 
can be found from the expression for the self-energy part by substituting the mass-shell 
condition? = m and p z  = mz with 

lim (m2 - p z )  In (m2  - p 2 )  = 0. 
p 2 + m 2  

Thus from expressions (15), (16) and (19) we finally obtain a contribution of order e4 to 
the electromagnetic mass. 

+ jol + A) + (5.5 - 3$( 1)) (7 - 3$( 1)) + , 1 
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(1 - 51 - 5312 

5 3 ( 1 - 4 3 ) + ( 5 1 + 5 2 ) ( 1 - 4 1 - < 2 - 5 3 )  
x In/ 

In addition to these terms there will be other contributions which are of order (K~)”. going 
to zero with K’. 

4. Conclusion 

The fourth-order contribution to the self-mass of the electron is finite in gravity-modified 
quantum electrodynamics. From the point of view of the theory, it is very encouraging 
that for higher orders as well gravity acts as an inbuilt regulator. Thus one can conclude 
that a matrix element, computed to any higher order in e (to all orders in K), is finite. The 
consistency of the theory is obvious from the fact that if we take the zero-gravity limit 
in the above result, the old logarithmic infinities (Frank 1951) of the type (In and 
In x, reappear. 
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